162

INZHENERNO-FIZICHESKII ZHURNAL

FLOW AND HEAT TRANSFER IN A FILM OF VISCOUS LIQUID ON A ROTATING

DISK

L. A. Dorfman

Inzhenerno-Fizicheskii Zhurnal, Vol. 12, No. 3, pp. 309—316, 1967

UDC 536.242+532.582.82

A numerical method employing a computer is used to investigate the
hydrodynamics and heat transfer of a thin film of incompressible vis-
cous liquid on a rotating disk for the case of laminar flow when it is

possible to neglect surface tension, body forces, and friction between
liguid film and gas medium,.

Viscous liquid film flow over rotating surfaces
needs to be studied in connection with the design of
turbomachinery and various industrial equipment, as
well as in other branches of technology. The published
literature offers no theoretical solutions of this prob-
lem: Vachagin and Nikolaev [1] have attempted to ob~
tain an approximate solution for average velocities,
Espig and Hoyle [2] give the results of measurements
of film thickness as a function of flow rate and disk
speed for the wave flow regime. It was, therefore,
considered desirable to make a theoretical study of the
problem by solving the flow and energy equations nu-
merically.

This paper is concerned with purely laminar flow
without allowance for surface tension and associated
wave effects. This influence of body forces and fric-
tion between liquid film and gas medium is neglected.

Assuming that the film is relatively thin, we can
write the Navier-Stokes and energy equations in the
form of equations of the boundary layer type [3]. In
this case 9p/y = 0; in view of the rotation of the disk
in an open space we also have 9p/x = 0. Therefore
the flow and energy equations assume the form
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Equations (1) are solved for the following boundary

conditions (Fig. 1). At the initial radius r = r; the

profiles of the velocity and temperature components

are given, i. e., atx=1

u=ul(y}, v=0"(y), B =0y). (2)

From the condition of adhesion of the liquid to the
rotating disk at y =0
U == 0, =X (3)

The absence of friction at the liquid-gas interface

gives

Su
0y |s

= 0. (4)

R
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At the surface of the disk the values of the normal

component of velocity w are also given:

P B

i. e., it is possible to specify any §'adia1 distribution
of supply and removal of liquid through the surface of
the rotating disk.

The temperature fields were calculated from the

condition of constant temperature head, i. e.,

O |y =1, O};=0. (8)

Each of the second-order equations of system (1)

is a nonlinear equation of parabolic type of the form

a.»aj___{_b_.a_]i_ of . (7

~ s

Ox dy 0y*

where a, b, c depend on unknown functions.

We introduce the rectangular net
X =1 + nA X,
Laom=0, 1,

y=mAy (n=0, 1, - M(n))

and write (7) in difference form at the "half-integer"
points

x=14+{n+0)Ax, y=mAy 0Lo<]).

We obtain the system of equations
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in the unknown functions f%l. In this case the values of
the coefficients @, b, ¢ at the "half-integer" points are
determined by linear interpolation:

¥ = ogit 4+ (1 0) of - (9)

We note that at ¢ = 1/2 we obtain the best order of
approximation of the derivatives. In the linear case the
same value ensures the stability of the computation
process (at all ¢ = 1/2). Therefore the calculations
were made for o = 1/2.
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Table 1

Change in Flow Parameters Along Radius with Variation in Flow
Rate (for Re = 10, Pr = 2)

“ - [ o Yo -
r/re T, o (_vr_.) g (r_m )S (Nu)y
¢=0.5
1 20 0 1.00 1.00 20
1.1 6.90 1.06 1.31 0.826 4.37
1.2 7.02 1.61 1.48 0.695 3.56
1.3 7.28 2.06 1.59 . 0.595 3.20
1.4 7.52 2.45 1.63 0.526 2.97
1.5 7.76 2.80 1.64 0.481 2.81
1.6 7.96 3.10 1.62 0.457 2.68
1.7 8.14 3.35 1.59 0.450 2.58
1.8 8.32 3.56 1.56 0.453 2.50
1.9 8.50 3.73 1.53 0.466 2.45
2.0 8.74 3.86 1.50 0.488 2.43
¢=1.5
! 20 0 1.00 1.00 20
1.1 5.14 1.42 1.04 0.826 5.43
1.2 3.72 2.05 1.07 0.694 ) 4.28
1.3 4.10 2.55 1.09 0.591 3.77
1.4 3.97 2.97 1.10 0.510 3.45
1.5 3.90 3.35 1.11 0.445 3.23
1.6 3.87 3.69 1.12 0.391 3.07
1.7 3.85 4.00 1.12 0.348 2.94
1.8 3.86 4.29 1.11 0.315 2.84
1.9 3.88 4.57 1.10 0.288 2.75
2.0 3.90 4.84 1.08 0.268 2.68
Table 2
Effect of Reynolds Number on Radial Flow Development
(at ¢ = 2.5, Pr = 2)
r/re T, —7, _UL) (_Z_’E’_) —(Nu T, —x (f’_) ( % —(Nu
| % , (v,,, J (22 | —owg | ¢ | (55, Ze ), | ~tug
Re=10 k Re == 50
1 20,0 [0 1.00 | 1.00 20.00 |20.0 0 1.00 1.00 20.0
1.1515.3812.25 | 1.02| 0.755 5.93 [10.3 5.031 1.02 0.753 | 10.8
1.30 | 4.20 ; 3.12 | 1.03 | 0.592 4.52 8.80; 7.101 1.03 0.592 9.17
1.45 [ 3.76 | 3.79 | 1.04 | 0.475 3.92 8.12 | 8.66| 1.04 0.466 8.27
1.60 | 3.54 { 4.35 | 1.04 | 0.391 3.57 7.74 | 9.96| 1.05 0.390 7.68
1.75 1 3.41 | 4.85 | 1.05 | 0.327 3.33 7.70 | 11.1 1.05 0.327 7.25
1.90 | 3.34 { 5.31 | 1.04 [ 0.279 3.16 | 7.34 |12.1 1.06 0.277 6.91
2.05]3.29|5.7311.03} 0.243 3.02 7.26 | 13.1 1.06 0.238 6.64
2.20 { 3.27 ] 6.13 | 1.01 | 0.217 2.91 7.20 | 14.0 1.06 0.206 6.42
2.35 | 3.26 | 6.50 | 0.982| 0.201 2.81 7.20 | 14.8 1.06 0.181 6.23
2.50 | 3.26 | 6.85 | 0.948| 0.192 2.73 7.20 | 15.6 1.06 0.160 6.07
2.65|3.26 | 7.18 1 0.918 0.188 2.65 7.24 16.4 1.06 0.143 5.92
2.80 | 3.27 | 7.48 | 0.880] 0.191 2.58 7.30 {17.2 1.06 0.128 5.80
2.95|3.27|7.756 | 0.845) 0.198 | 2.51 7.36 (17.9 1.06 0.116 5.68
3.1013.2817.99{0.811} 0.208 2.45 7.44 118.6 1.06 0.107 5.58
3.25 | 3,28 | 8.21 | 0.778] 0.222 2.39 7.52 119.4 1.05 0.099 5.49
3.4 | 3.29 | 8.40 | 0.745] 0.238 2.33 7.62 120.1 1.04 0.094 5.41
3.55 | 3.31 | 8.57 | 0.715] 0.257 2.29 7.74 (20.8 1.03 0.092 5.33
3.70 { 3.33 | 8.72 | 0.690; 0.275 2.25 7.84 [21.4 1.02 0.090 5.26
3.85| 3.36 | 8.87 | 0.665| 0.298 2.21 7.96 |22.1 1.00 0.091 5.20
4.00 ] 3.41 { 8.99 | 0.644] 0.321 2.20 8.10 122.8 0.981 0.095 5.14
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Fig. 1. Diagram of the problem.

In order to satisfy the continuity equation and the
boundary condition for w, it is convenient to introduce
the stream function

Y
P o= S uxdy. (10)
9

Then from the continuity equation the values of wgfg

are computed from

Ret

wke = gite
™ 5+ Ax[l+ (n + o) Ax]

5 — ¥, (1D

The thickness of the viscous film in the (n+ 1)-th
section is determined after obtaining the value of the
total flow rate zpfﬂ, which depends on the flow rate

1
through the initial section ¢ = S‘ u*dy and the rate of
0

supply through the surface of the disk w,(x):
Ax{l+4(n+0)Ax]
Re?

Having the values of uf} in the given section in some
approximation, from (10) we compute the values of z/)%l
up to some m = M(n) for which

Pl < < gt (12)

. (12)

P =+ (@ — i)

In each section the second-order difference Eq. (8)
takes the form

05 [t A+ B fo 4 Y Fritt = 8 (14

This equation is solved by the pivotal condensation
method: first the coefficients

At = — Gy 2 (Bt -+ Vi1 Am),
Bri == (8m—1 — Ym—1 Bn) : (Bm—1 + Ym—1 Am), (15)
are computed, and then the values of the function
frat = At fm+ Bt - (16)

For boundary conditions (4), with account for (13),
using quadratic interpolation we obtain the following
equations for the initial coefficients:

n n 1
Ay = (ﬁm_1+2 g% a;H):

g+1/2
+3/2 .
G0 o i)
A n q+43/2
B,’l“ﬂ?““"( Yo =17 “M“') ’

9= (Wl — V) (W, — W) (17
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Boundary conditions (6) for the temperature give

Ay=q:(l—q), Byu=0. (18)

The quantities afy, B, vp,» 6th depend not only on

the values of the unknown functions in the previous sec-
tion, but also on the values in the given section; there-
fore it is necessary to use iteration.

In order to work out and test the algorithm and the
program, an analytic similar solution was found for
small Re numbers. This solution is obtained from the
condition of constant film thickness for a correspond-~
ing uniform supply of liquid through the disk. It has
the form

u=ul(y)x, v="00(y)x, (19)
where
ul = (y~-;— y2)+Re2y>’
1 1 1 1 14
% — S D DU S B Bt ,
( 560 YT Y Tg Y T 5"
2

=1+ %—y(——y“x +4y? —8) +... . (20

In this case medium is supplied at a rate

-2 e 208 o,
W, = 3 Re 315 Ret 4 ... . 21

Calculations based on this program with velocity
distributions in the initial section taken in accordance
with (20) and with uniform infiltration, in accordance
with (21), give conservation of film thickness, non-
dependence of w on x, and a radial velocity variation
proportional to x in complete conformity with (19).

We now present some results. They were obtained
for Ax = 0.005, Ay = 0.025, and the iteration accuracy
g = 1073, The initial velocity and temperature profiles
were assumed almost constant:

W=y, =1, 8°=0;

liguid was not supplied through the surface of the disk
(WQ = 0) .

The pattern of radial flow development (Fig. 2)
shows that at a smaller flow parameter ¢ = vpyAryw)
the film thickness decreases more sharply owing to
the more rapid increase in radial velocities. Variation
of ¢ has a lesser effect on the behavior of the circular
velocity and temperature profiles. With increase in
the dimensionless radial velocity gradient vy/vpy at the
disk, as ¢ decreases the dimensionless friction 7p in-
creases correspondingly (Table 1). The dimensionless
circular component of the friction stress on the disk
?(p varies less sharply with change in ¢, like the di-
mensionless heat flux Nu. The radial velocity at the
surface of the disk (vy/ry)g. like the dimensionless
circular velocity defect (rw — v¢)s/rw, at first in-
creases along the radius and then begins to fall.

The effect of the Reynolds number Re at fixed flow
rate (Fig. 3 and Table 2} is expressed in an accelera-
tion of the decrease in film thickness with increase in
Re as the radial velocity increases. Apart from the in-
crease of (vy/vyy) g with increase in Re, the profile of
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¥ig. 2. Effect of flow rate on motion of liquid film at
Re = 10 {Pr = 2). The solid lines and 1 correspond to
¢ =0.5, the dashed lines and 2 to ¢ =1,5,
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Fig. 3. Effect of Re number on motion of liquid film at
¢ = 2.5 (Pr = 2). The solid lines and 1 correspond to
Re =10, the dashed lines and 2 to Re =50,
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this velocity becomes fuller, the gradient at the disk
increases. Correspondingly, as Re grows, so do the
friction stresses. The same applies to the circular
velocity defect (rw — vg)g @ rw.

16 18 20 r/n

Fig. 4. Comparison of flow in liquid film on
rotating disk (a) with flow in half-width of gap
between two rotating disks (b) for the same

@ = 5 and Re = 12.5.

We note that whereas when ¢ increases the coeffi-
cient of heat transfer from the disk increases only
slightly, with increase in Re it grows substantially,
almost as Rel/?.

We will compare the {low in a viscous liquid film

on a rotating disk with the flow between two identically

rotating disks at identical values of ¢ = vyAryw) = 5

and Re = 6 w/v = 12.5 and the same inlet velocity pro-
files. In this case for flow between two disks §; is the

half-width of the gap. The velocity fields are also

shown (Fig. 4) for the half-width of the gap. Calculation

INZHENERNO-FIZICHESKII ZHURNAL

of the flow between two disks, which was based on an-
other program [4], revealed the development of the
radial velocity component into a separation profile
(separation occurred at x > 1.8), whereas the flow of
the liquid film was separationless, and the profiles of
radial velocity and circular velocity defect were full.
Accordingly, the friction stresses at the disk for a
liguid film flow considerably exceed the values for the
case of two disks.

NOTATION

Vr: Vg, and v, are the radial, circular, and normal
velocity components, respectively; p is the pressure;
T is the temperature; p is the density; v is the kine-
matic viscosity; u = pv; cp is specific heat; g is spe-
cific heat flux; w is angular veloecity; rp is the initial
radius; §; is the film thickness at initial radius; 7, =
= Trs/”"ro)? "r'(p = T¢s/(r0wu); Nu = qs/A{(Tq — Tg)-
Subscripts: d—on disk, s—on film surface.
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